

500-kHz Half-Bridge DC-DC Converter With Integrated Secondary Synchronous Rectification Control

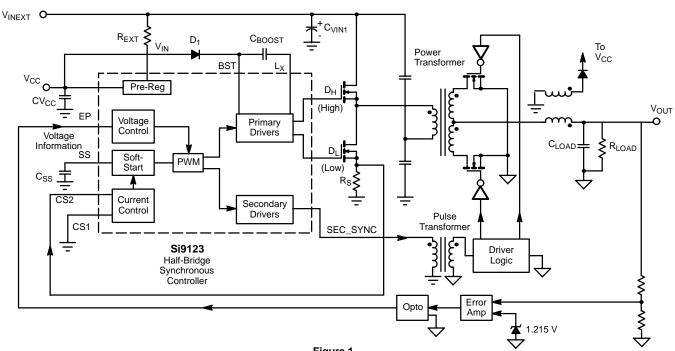
FEATURES

- 12-V to 72-V Input Voltage Range
- Compatible with ETSI 300 132-2 100 V, 100-ms Transients
- Integrated Half-Bridge 1-A Primary Drivers
- Secondary Synchronous Rectifier Control
- Voltage Mode Control
- Voltage Feedforward Compensation
- High Voltage Pre-Regulator Operates During Start-Up
- Current Sensing On Low-Side Primary Device

DESCRIPTION

Si9123 is a dedicated half-bridge controller IC ideally suited to fixed telecom dc-dc converter applications where high efficiency is required at low output voltages (e.g. <3.3 V). Designed to operate within the voltage range of 12-72 V and withstand 100 V, 100 ms transients, the IC is capable of controlling and directly driving both primary side MOSFET switches of a half-bridge circuit.

High conversion efficiency is achieved by use of synchronous rectifying MOSFET transistors in the secondary. Due to the


FUNCTIONAL BLOCK DIAGRAM

- Hiccup Current Control During Shorted Load
- Low Input Voltage Detection
- Programmable Soft-Start Function
- Programmable Oscillator Frequency
- Over Temperature Protection

APPLICATIONS

- Network Cards
- Power Supply Modules

very low on-resistance of the secondary MOSFETs, a significant increase in the efficiency can be achieved as compared with conventional Schottky diodes for today's low output voltages. On-chip control of the dead time delays between the primary and secondary signals keep efficiencies high and prevents accidental destruction of the power transformer or wasted energy from self timed approaches. Such a system can achieve conversion efficiencies well in excess of 90%.

DESCRIPTION (CONTINUED)

Si9123 has advanced current monitoring circuitry to permit the user to set the maximum current in the primary circuit. Such a feature acts as protection against output shorts. Upon sensing an overload condition, the converter is shut off for a period of time and then soft-start cycle is re-initiated, achieving hiccup mode operation. Current sensing is by means of a sense resistor on the low-side primary device. An integrated over-temperature shutdown circuit also protects the system.

The 100-V depletion mode MOSFET integrated pre-regulator

circuit permits direct operation from input voltage with only one series resistor during startup. The pre-regulator automatically disconnects from the input supply when the output voltage is established by means of a feedback winding from the filter inductor.

Si9123 is available in <u>TSSOP-16</u> pin package. In order to satisfy the stringent ambient temperature requirements, Si9123 is rated to handle the industrial temperature range of -40 to 85° C.

DETAILED BLOCK DIAGRAM

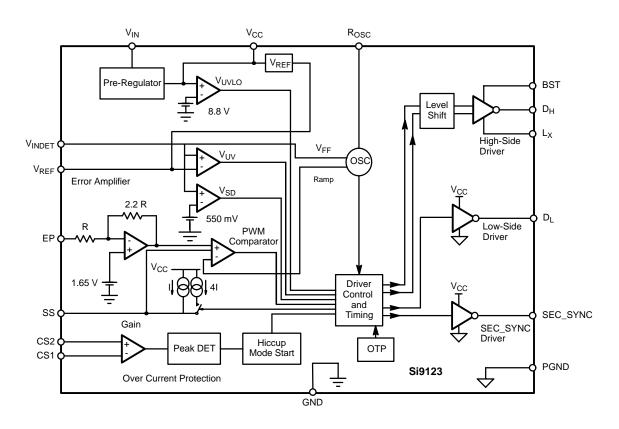


Figure 2.

ABSOLUTE MAXIMUM RATINGS (ALL VOLTAGES REFERENCED TO GND = 0 V)

V _{IN} (Continuous)
$V_{\text{IN}} (100 \text{ ms}) \ldots 100 \text{ V}$
V _{CC}
V _{BST}
V _{LX}
V _{BST} - V _{LX}
$V_{\text{REF}},R_{\text{OSC}}$
Logic Inputs
Analog Inputs

SEC_SYNC Drive Current
HV Pre-Regulator Input Current (continuous) 5 mA
Storage Temperature
Operating Junction Temperature $\hfill \ldots \hfill 125^\circ C$
Power Dissipation ^a
TSSOP-16 (T _A = 25°C) 1.25 W
Thermal Impedance (Θ_{JA})
TSSOP-16 ^b 100°C/W
Notes a. Device mounted on JEDEC compliant 1S2P (4-layer) test board
a. Device mounted on JEDEC compliant 132F (4-layer) lest board.

nt 152P (4-layer) test board.

Derate -10 mW/°C above 25°C. b.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE (ALL VOLTAGES REFERENCED TO GND = 0 V)

V _{IN}	
C _{VIN1} C _{VIN2}	100 $\mu\text{F/ESR}$ \leq 100 m\Omega and 0.1 μF
V _{CC} Operating	10 to 13.2 V
CV _{CC}	4.7 μF
fosc	200 to 600 kHz
R _{OSC}	$\ldots\ldots$.24 to 72 k Ω
R _{EXT}	1.4 kΩ

C _{SS}
C _{REF} 1.0 μF
C _{BOOST} 0.1 μF
$C_{\text{LOAD}} \ \dots \ 150 \ \mu\text{F}$
Analog Inputs \hdots
Digital Inputs 0 to V _{CC}
Reference Voltage Output Current 0 to 2.5 mA

		Test Conditions Unless Specified		Limits		
		$CS1 = CS2 = 0 \text{ V}, f_{\text{NOM}} = 500 \text{ kHz}, \text{V}_{\text{IN}} = 48 \text{ V}$ $\text{V}_{\text{INDET}} = 4.8 \text{ V}; 10 \text{ V} \le \text{V}_{\text{CC}} \le 13.2 \text{ V}$	-40 to 85°C			
Parameter	Symbol		Min ^b	Турс	Max ^b	Unit
Reference (3.3 V)	· · ·					
Output Voltage	V _{REF}	V_{CC} = 12 V, 25°C Load = 0 mA	3.2	3.3	3.4	V
Short Circuit Current	I _{SREF}	V _{REF} = 0 V			-50	mA
Load Regulation	dVr/dlr	I _{REF} = 0 to -2.5 mA		- 30	-75	mV
Power Supply Rejection	PSRR	@ 100Hz		60		dB
Oscillator						
Accuracy (1% R _{OSC})		$R_{OSC} = 30 \text{ k}\Omega, \text{ f}_{NOM} = 500 \text{ kHz}$	-20		20	%
Max Frequency	F _{MAX}	$R_{OSC} = 24 \text{ k}\Omega$		600		kHz
Error Amplifier			1			
Input Bias Current	I _{BIAS}	V _{EP} = 0 V	- 40		- 15	μΑ
Gain	A _V			-2.2		
Bandwidth	BW			5		MHz
Power Supply Rejection	PSRR	@ 100Hz		60		dB
Slew Rate	SR			0.5		V/μs
Current Sense Amplifier			•	•		
Input Voltage CM Range	V _{CM}	V _{CS1} - GND, V _{CS2} - GND		±150		mV
Input Amplifier Gain	A _{VOL}			17.5		dB
Input Amplifier Bandwidth	BW			5		MHz
Input Amplifier Offset Voltage	V _{OS}			±5		
V _{CC} Hiccup Threshold	V _{THCUP}	Increase CS2 Until SS Hiccups		150		mV
Hysteresis		Decrease CS2 Until SS Clamps		-50	l	

Si9123

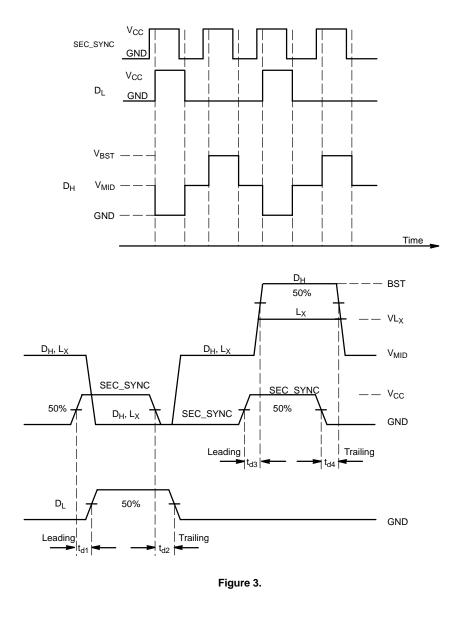
Vishay Siliconix

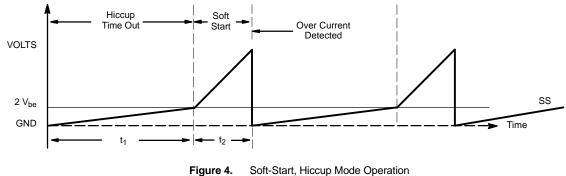
New Product

SPECIFICATIONS ^a							
	Test Conditions Unless Specified CS1 = CS2 = 0 V, f _{NOM} = 500 kHz, V _{IN} = 48 V		Limits -40 to 85°C				
Parameter	Symbol	$V_{\text{INDET}} = 4.8 \text{ V}; 10 \text{ V} \le \text{V}_{\text{CC}} \le 13.2 \text{ V}$		Min ^b	Турс	Max ^b	Unit
PWM Operation							
Duty Cycle ^e	D _{MAX}	f _{OSC} = 500 kHz	V _{EP} = 0 V	90	92	95	%
Duty Cycle	D _{MIN}	10SC - 500 KHZ	V _{EP} = 1.85 V		< 15		70
Pre-Regulator							
Input Voltage (Continuous)	V _{IN}	I _{IN} = 10 μA				72	V
Input Leakage Current	I _{LKG}	V_{IN} = 72 V, V_{CC} > V_{F}	REG			10	
	I _{REG1}	V_{IN} = 72 V, V_{INDET} < 7	V _{SD}		86	200	μA
Regulator Bias Current	I _{REG2}	$V_{IN} = 72 \text{ V}, \text{ V}_{INDET} > \text{ V}$	/ _{REF}		4	6.5	mA
Pre-Regulator Drive Capacility	I _{START}	$V_{CC} < V_{REG}$		20			ma
	V	V _{INDET} > V _{REF}		7.4	9.1	10.4	
V _{CC} Pre-Regulator Turn Off Threshold Voltage	V _{REG1}		$T_A = 25^{\circ}C$	8.5	9.1	9.7	
·····g-	V _{REG2}	V _{INDET} = 0 V	0 V		9.2		v
Undervoltage Lockout ^d	Vuvlo	V _{CC} Rising		7.15	8.6	9.8	V
	VUVLO	VCC Rising	$T_A = 25^{\circ}C$	8.1	8.6	9.3	
V _{UVLO} Hysteresis	VUVLOHYS				0.5		
Soft-Start							
Soft-Start Current Output	I _{SS1}	$0 < V_{SS} < 2 V_{be}$		12	20	28	μΑ
Solt-Start Current Output	I _{SS2}	$2 V_{be} < V_{SS} < 4.8$	V	60	100	200	μΑ
Soft-Start Completion Voltage	V _{SS_COMP}	Normal Operation		7.35	8.1	8.85	V
Shutdown							
VINDET Shutdown FN	V _{SD}	V _{INDET} Rising		350	550	720	
V _{INDET} Hysteresis		VINDET			200		mV
VINDET Input Threshold Ve	oltages				•		
V _{INDET} - V _{IN} Under Voltage	V _{UV}	VINDET Rising		3.13	3.3	3.46	v
VINDET Hysteresis		VINDET			0.3		V
Over Temperature Protect	tion				•		
Activating Temperature		T _J Increasing			160		
De-Activating Temperature		T _J Decreasing			130		°C
Converter Supply Current	t (V _{CC})						
Shutdown	I _{CC1}	Shutdown, V _{INDET} = 0 V		50	140	350	μA
Switching Disabled	I _{CC2}	V _{INDET} < V _{REF}		1.8	2.8	3.8	
Switching w/o Load	I _{CC3}	$V_{\text{INDET}} > V_{\text{REF}}$ f _{NOM} = 500 kHz		3.0	4.4	6.8	
Switching with CLOAD	I _{CC4}	V_{CC} = 12 V, C_{DH} = C_{DL} = 3 nF, C_{SE}	C_SYNC = 0.3 nF		15.2		mA
V _{CC} Hiccup Current	I _{HCUP}	$\frac{1}{CS2 - CS1 = 200 \text{ mV}, C_{DL} = C_{DH} = 3 \text{ nF}}{C_{SEC} \text{ sync} = 0.3 \text{ nF}}$			4.3		

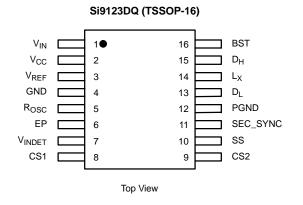
						1	
		Test Conditions Unless Specified	Limits -40 to 85°C				
Parameter	Symbol	$CS1 = CS2 = 0 V, f_{NOM} = 500 \text{ kHz}, V_{IN} = 48 V$ $V_{INDET} = 4.8 V; 10 V \le V_{CC} \le 13.2 V$	Min ^b	Тур ^с	Max ^b	Unit	
Output MOSFET DH D	river (High-Side)		•				
Output High Voltage	V _{OH}	Sourcing 10 mA	V _{BST} - 0.3			v	
Output Low Voltage	V _{OL}	Sinking 10 mA			V _{LX} + 0.3	_	
Boost Current	I _{BST}		0.8	1.55	2.4		
L _X Current	I _{LX}	$V_{LX} = 48 \text{ V}, V_{BST} = V_{LX} + V_{CC}$	-0.8	-0.4	-0.1	mA	
Peak Output Source	ISOURCE			-1.0	-0.75	A	
Peak Output Sink	I _{SINK}	$V_{LX} = 48 \text{ V}, V_{BST} = V_{LX} + V_{CC}$	0.75	1.0			
Rise Time	tr			18	28	ns	
Fall Time	t _f	$T_A = 25^{\circ}C, C_{DH} = 3 \text{ nF}, V_{CC} = 12 \text{ V}, 20 - 80\%$		22	28		
Output MOSFET DL Dr	iver (Low-Side)	1		1	1	1	
Output High Voltage	V _{OH}	Sourcing 10 mA	V _{CC} - 0.3			v	
Output Low Voltage	V _{OL}	Sinking 10 mA			0.3	v	
Peak Output Source	ISOURCE			-1.0	-0.75	0.75 A	
Peak Output Sink	I _{SINK}	V _{CC} = 12 V	0.75	1.0			
Rise Time	tr			19	28		
Fall Time	t _f	$T_A = 25^{\circ}C, C_{DL} = 3 \text{ nF}, V_{CC} = 12 \text{ V}, 20 - 80\%$		24	28	ns	
Secondary_Synchrono	ous Driver			1		1	
Output High Voltage	V _{OH}	Sourcing 10 mA				V	
Output Low Voltage	V _{OL}	Sinking 10 mA			0.4		
	t _{d1}			90	110		
Leading Edge Delays	t _{d3}	T _A = 25°C, V _{CC} = 12 V, L _X = 48 V, See <u>Figure 3</u>		75	95		
	t _{d2}	$C_{DH} = C_{DL} = 3 \text{ nF}, C_{SGC, SYNC} = 0.3 \text{ nF}$		90	110	ns	
Trailing Edge Delays	t _{d4}			65	95	-	
Peak Output Source	ISOURCE	E V _{CC} = 12 V		- 100			
Peak Output Sink	I _{SINK}			100		mA	
Rise Time	tr			16	28		
Fall Time	t _f	$T_A = 25^{\circ}C, C_{SEC_{SYNC}} = 3 \text{ nF}, V_{CC} = 12 \text{ V}, 20 - 80\%$		17	28	ns	
Voltage Mode		1	•	1	1	1	
	Input to high-side switch off		< 200				
Error Amplifier	t _{d2DL}	Input to low-side switch off		<200		ns	
Current Mode							
Current Amplifier ^t d3DH t _{d4DL}	Input to high-side switch off		<200		ns		
		Input to low-side switch off	1	< 200	İ	115	

Notes a. Refer to PROCESS OPTION FLOWCHART for additional information. b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum (-40° to 85°C). c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing and are measured at V_{CC} = 12 V unless otherwise noted. d. V_{UVLO} tracks V_{REG1} by a diode drop e. Measured on D_L or D_H outputs.


Si9123

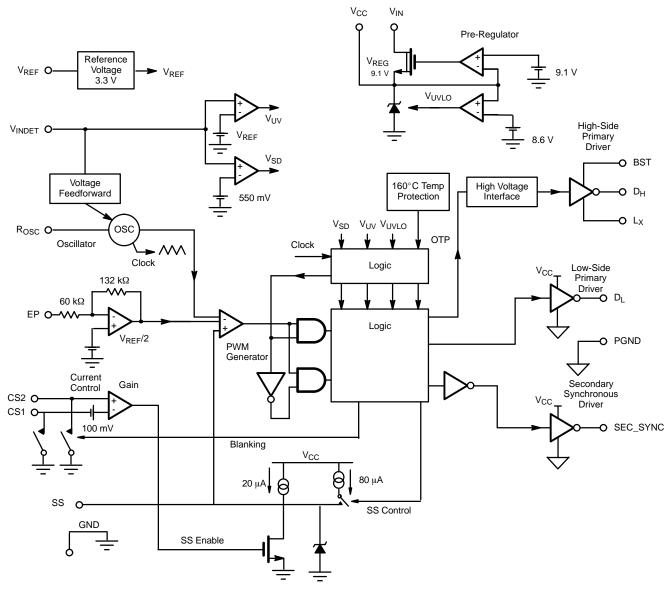

Vishay Siliconix

New Product


TIMING DIAGRAMS FOR MOS DRIVERS

PIN CONFIGURATION

ORDERING INFORMATION				
Part Number Temperature Range Package		Package		
Si9123DQ-T1	-40 to 85°C	Tape and Reel		
Si9123DQ	-40 10 85 °C	Bulk		


PIN DESCRIPTION				
Pin Number	Name	Function		
1	V _{IN}	Input supply voltage for the start-up circuit.		
2	V _{CC}	Supply voltage for internal circuitry		
3	V _{REF}	3.3-V reference, decoupled with 1-µF capacitor		
4	GND	Ground		
5	R _{OSC}	External resistor connection to oscillator		
6	EP	Voltage control input		
7	VINDET	V_{IN} under voltage detect and shutdown function input. Shuts down or disables switching when V_{INDET} falls below preset threshold voltages and provides the feed forward voltage.		
8	CS1	Current limit amplifier negative input		
9	CS2	Current limit amplifier positive input		
10	SS	Soft-Start control - external capacitor connection		
11	SEC_SYNC	Secondary side timing signal		
12	PGND	Power ground.		
13	DL	Low-side gate drive signal – primary		
14	L _X	High-side source and transformer connection node		
15	D _H	High-side gate drive signal – primary		
16	BST	Bootstrap voltage to drive the high-side n-channel MOSFET switch		

Vishay Siliconix

New Product

DETAILED FUNCTIONAL BLOCK DIAGRAM

DETAILED OPERATION

Start-Up

A detailed Functional Block Diagram is shown in Figure 5 with additional detail of the pre-regulator shown in Figure 6. The pre-regulator circuit acts as a linear regulator to provide V_{CC} directly from the V_{INEXT} supply until the V_{CC} supply voltage between 10 V to 13.2 V can be sustained from an auxiliary winding from the secondary of the power inductor.

When V_{INEXT} rises above 0 V, the internal pre-regulator begins charging the external capacitor on V_{CC} . The charging current is limited to typically 40 mA by the internal 100 V DMOS device. When V_{CC} exceeds the UVLO voltage of 8.8 V, a soft-start cycle of the controller is initiated to provide power to the secondary. Once switching commences, the internal gate drivers for the primary side switching transistors and the drive current into the secondary synchronization driver draw additional current from the V_{CC} capacitor and pre-regulator.

The pre-regulator will remain on until V_{CC} equals V_{REG} but between V_{UVLO} and V_{REG}, excessive current may result in V_{CC} falling below V_{UVLO} and stopping soft-start operation. This situation is avoided by the hysteresis between V_{REG} and V_{UVLO} and correct sizing of the V_{CC} capacitor, bootstrap capacitor, the soft-start capacitor, the primary MOSFET gate driving charge, and load on the SEC_SYNC output. The value of the V_{CC} capacitor should be chosen to be capable of maintaining soft-start operation with V_{CC} above V_{UVLO} until the V_{CC} current can be supplied from the external circuit (e.g., via an auxiliary winding on the secondary inductor).

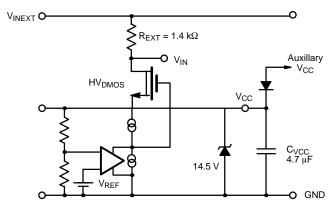
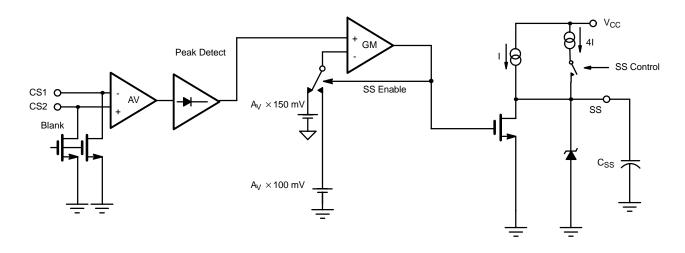
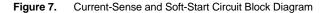


Figure 6. High-Voltage Pre-Regulator Circuit

The feedback voltage from the output of the auxiliary winding must sustain V_{CC} above V_{REG} to fully disconnect the pre-regulator, isolating V_{CC} from V_{INEXT}. V_{CC} is then maintained above V_{REG} for the duration of operation. In the event of an over voltage condition on V_{CC}, an internal voltage

clamp turns on at 14.5 V to shunt excessive current to GND. In systems where operation is directly from a 12 V supply, V_{INEXT} and V_{CC} can be connected to the 12 V bus.


The soft-start circuit is designed for the dc-dc converter to start up in an orderly manner and reduce component stress. Soft-start is achieved by ramping the maximum attainable duty cycle during the soft-start time. The duty cycle is increased from zero to the final value at the rate set by an external capacitor, C_{SS} as shown in Figure 7. The hiccup time is set by an internal 20 μA current source charging C_{SS} from 0 V to $2~V_{be},$ at which point switching begins. Then a 100 μA charging current is applied to C_{SS} to charge from 2 V_{be} to the final value controlling the duty cycle as it rises. In the event of UVLO, shutdown or over current, the SS pin will be held low (<1 V) disabling driver switching. A longer soft-start time may be needed for highly capacitive loads and high peak-output current applications. In the event of an over current condition being detected, the soft-start pin will be pulled low and the cycle will start again performing a hiccup as shown in Figure 4. The hiccup off-time, t_1 , is given by:


$$t_1 \approx C_{SS} imes rac{1.2 \text{ V}}{20 \, \mu A}$$

The soft-start time t₂ is can be estimated as:

$$t_2 \approx \frac{(C_{SS} \times V_{OUT} \times n)}{(K \times 100 \,\mu\text{A})}$$

where V_{OUT} is the output of the converter, and n is the turns ratio of the primary to each secondary winding, and K is the ratio of the resistive divider from V_{INEXT} to V_{INDET} (typically 10/1).

Vishay Siliconix

Si9123

New Product

Care should be taken to control the operating time using the internal pre-regulator to prevent excessive power dissipation in the IC. The use of an external dropping resistor connected in series with the VIN pin to drop the voltage during start up is recommended. The value of R_{EXT} is selected to drop the input voltage to the IC under worst case conditions thereby dissipating power in the resistor, instead of the IC. If the supply output is shorted and the auxiliary winding does not provide the V_{CC} current, then continuous soft-start cycles will occur. The average power in the IC during start-up where the hiccup operation would be performed continuously is given by:

$$\begin{split} \text{Power}\left(\text{IC}\right) &= \text{V}_{\text{IN}} \times \frac{\left[t_1 \, I_{\text{CC2}} + t_2 \left(I_{\text{CC4}} + I_{\text{SEC}_\text{SYNC}}\right)\right]}{\left(t_1 + t_2\right)} \\ \text{Power}\left(\text{R}_{\text{EXT}}\right) &= \left(\text{V}_{\text{INEXT}} - \text{V}_{\text{IN}}\right) \times \frac{\left[t_1 \, I_{\text{CC2}} + t_2 \left(I_{\text{CC4}} + I_{\text{SEC}_\text{SYNC}}\right)\right]}{\left(t_1 + t_2\right)} \end{split}$$

where I_{CC2} is the non-switching supply current, I_{CC4} is the supply current while switching, I_{SEC_SYNC} is the average current out of the SEC_SYNC pin, and t_1 and t_2 are defined in Figure 4.

After the feedback voltage from the secondary overrides the internal pre-regulator, no current flows through R_{EXT} . An example of the feedback circuitry is shown in <u>Figure 15</u>.

The SS pin has a predictable +1.25-mV/°C temperature coefficient and can be used to continuously monitor the junction temperature of the IC for a given power dissipation.

Reference

The reference voltage of Si9123 is set at 3.3 V. The reference voltage should be de-coupled externally with a 0.1 μF capacitor and has 50-mA source capability. The REF pin voltage is 0 V in shutdown mode.

Voltage Mode PWM Operation

Under normal load conditions, the IC operates in voltage mode and generates a fixed frequency pulse-width modulated signal to the drivers. Duty cycle is controlled over a wide range to maintain the output voltage under line and load variation. Voltage feed-forward is also included to improve line regulation and transient response. In the half-bridge topology requiring isolation between output and input, the reference voltage and error amplifier are supplied externally, usually on the secondary side.

The output error signal is usually passed to the power converter through an opto-coupling device for isolation. The error information enters the IC via pin EP and where 0 V results in the maximum duty cycle, whilst 2 V represents minimum duty cycle. The EP error signal is gained up by -2.2X via an inverting amplifier and compared against the internal ramp generator. The relationship between Duty Cycle and VEP is shown in the Typical Characteristic section, <u>Duty Cycle vs. VEP</u> <u>25°C</u>, page 12.

Voltage feed-forward is implemented by taking the attenuated V_{INEXT} signal at V_{INDET} to directly modulate the duty cycle. This relationship is shown in the Typical Characteristic section, <u>Duty Cycle vs. V_{INDET} </u> page 12. The response time to line transients is very short since the PWM duty cycle is changed directly without having to go through the error amplifier feedback loop. At start-up, i.e., once V_{CC} is greater than V_{UVLO} , switching is initiated under soft-start control which increases the maximum attainable switch on-time linearly over the soft-start period. Start-up from a V_{INDET} power down, over-temperature, or over current is also initiated under soft-start control.

Half-Bridge and Synchronous Rectification Timing Sequence

The PWM signal generated within the IC controls the low and high-side bridge drivers on alternate cycles. A period of inactivity always results after initiation of the soft-start cycle until the soft-start voltage reaches approximately 2 Vbe and PWM generated switching begins. The first bridge driver to switch is always the low-side, D_L as this allows charging of the high-side boost capacitor. The timing and coordination of the drives to the primary and secondary stages is very important and the relationships are shown in Figure 3. It is essential to avoid the situation where both of the secondary MOSFETs are on when either the high or the low-side switch are active. In this situation the transformer would effectively be presented with a short across the output. The SEC_SYNC timing signal is set to be ahead of the primary drive outputs by 50 - 80 ns.

Primary High- and Low-Side MOSFET Drivers

The drive voltage for the low-side MOSFET switch is provided directly from the V_{CC} supply. The high-side MOSFET however requires the gate voltage to be enhanced above V_{IN}. This is achieved by bootstrapping the V_{CC} voltage onto the L_X voltage (the high-side MOSFET source). In order to provide the bootstrapping an external diode and capacitor are required as shown on the application schematic. The capacitor will charge up after the low-side driver has turned on. The driver signals D_H and D_L are shown in Figure 3. The drive currents for the primary side MOSFETs is supplied from the V_{CC} supply and can influence start up conditions.

Secondary Synchronization Driver

The secondary side MOSFETs are driven by the SEC_SYNC output via a pulse transformer and gate driver circuits. The time relationships are shown in Figure 3. Logic circuitry on the secondary side is required to align the synchronous rectifier gate drive with the primary drive. The current supplied to the pulse transformer is drawn from V_{CC} .

Oscillator

The oscillator is designed to operate at a frequencies up to 500 kHz. The 500-kHz operating frequency allows the converter to minimize the inductor and capacitor size, improving the power density of the converter. The oscillator and therefore the switching frequency is programmable by a resistor on the R_{OSC} pin. The relationship is shown in the Typical Characteristics, F_{OSC} vs. R_{OSC} .

Si9123

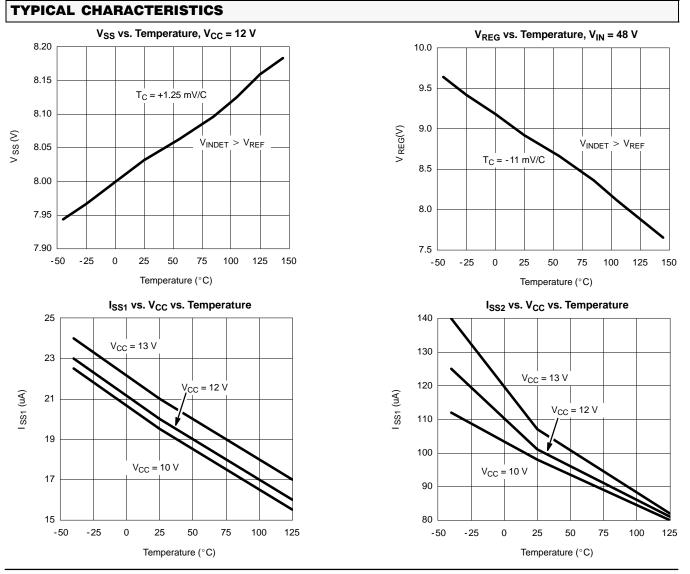
Vishay Siliconix

Hiccup Operation

Current limiting is achieved by monitoring the differential voltage between CS1 and CS2 pins which are connected across a primary low-side sense resistor. Once the differential voltage exceeds the 150-mV trigger point, Hiccup operation is started. The SS pin is pulled to ground and switching stops until the SS pin charges up to 2 V_{be} whereupon a duty cycle limited soft-start is initiated. The upper and lower switching points of the current limit have 50 mV of hysteresis.

VINEXT Voltage Monitor – VINDET

The Si9123 provides a means of sensing the voltage on $V_{\rm INEXT}$ to control the operating mode and provides the feed-forward control voltage to the PWM controller. This is achieved by choosing an appropriate resistive tap between $V_{\rm INEXT}$ and ground.


When the V_{INDET} voltage is greater than 720 mV but less than V_{REF} and V_{CC} is greater than $V_{\text{UVLO}},$ all internal circuitry is enabled, but switching is stopped.

When the applied voltage is greater than V_{REF} and V_{CC} is greater than V_{UVLO}, the output drivers are activated as normal. If the voltage applied to the V_{INDET} pin is greater than V_{CC} -0.3 V, the high-side driver, D_H, will stop switching until the voltage drops below V_{CC} -0.3 V. If continuous switching is desired under maximum V_{INEXT} conditions, the resistive tap on the V_{INEXT} divider must be set to accommodate the normal V_{CC} operating voltage. Alternatively, a zener clamp diode from V_{INDET} to GND may also be used.

 V_{INDET} also provides the input to the voltage feed-forward function by adjusting the amplitude of the PWM ramp to the PWM comparator.

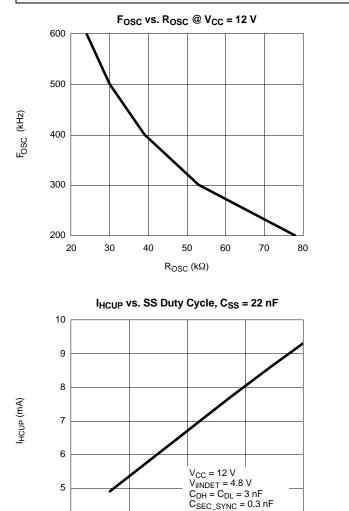
Shutdown Mode

If V_{INDET} pin is forced below 470 mV the device will enter SHUTDOWN mode. This powers down all unnecessary functions of the controller, ensures that the primary switches are off and results in a low level current demand of 140 μ A from the V_{INEXT} or V_{CC} supplies.

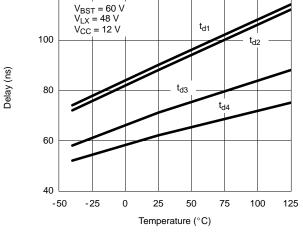
Document Number: 72098 S-03639—Rev. B, 20-Mar-03

Vishay Siliconix

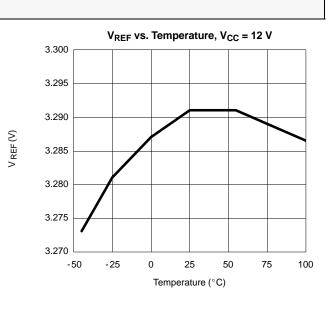
New Product

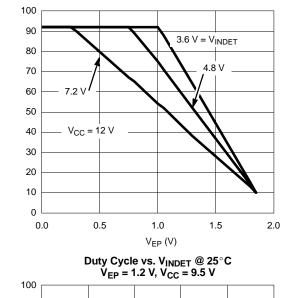

Duty Cycle (%)

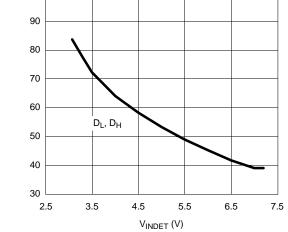
Duty Cycle %


50

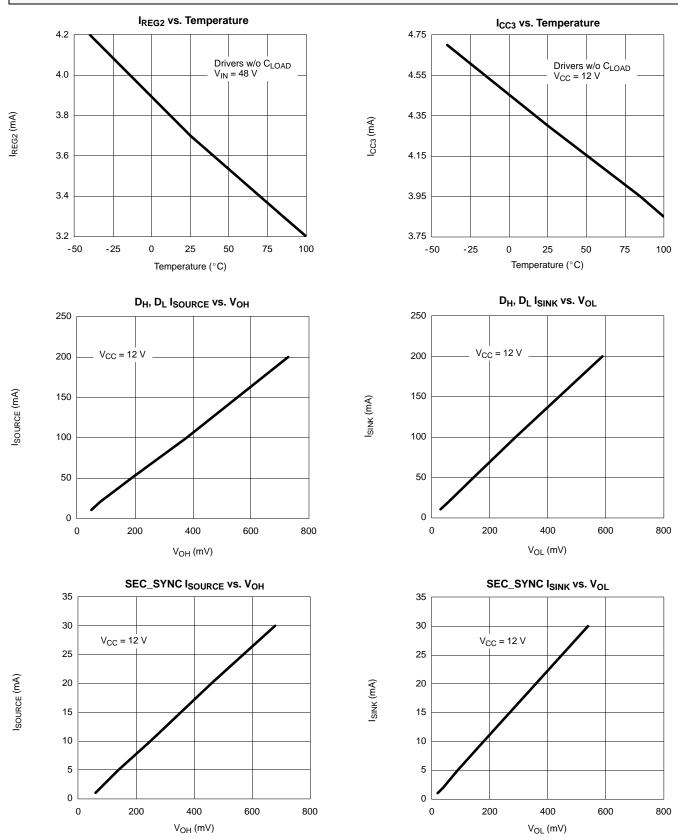
TYPICAL CHARACTERISTICS


20 30 40 SS Duty Cycle (%) = $t_2/(t_1 + t_2)$ D_L, D_H Delay vs. Temperture

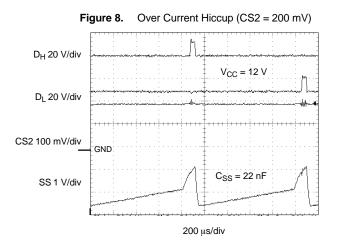

4


120

10


DL, DH Duty Cycle vs. VEP

TYPICAL CHARACTERISTICS


Si9123

Vishay Siliconix

New Product

TYPICAL WAVEFORMS

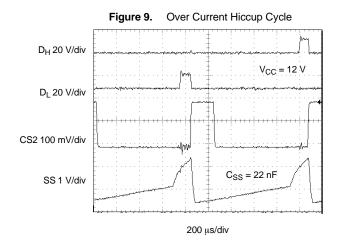


Figure 10. Pre-Regulator Start-Up ∆:0 s @:360µs VINEXT 10 V/div V_{CC} 10.0 V Ch2 10.0 V M2.00ms Ch1 J 5.8 V Chi 2 ms/div

 $V_{BST} = 60 V$

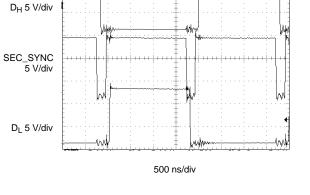


Figure 11. Operating Driver Waveforms

 $V_{CC} = 12 V$

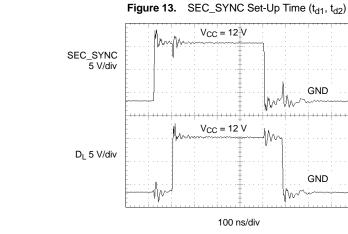


Figure 13.

Figure 12. SEC_SYNC Set-Up Time (t_{d3}, t_{d4})

V_{LX} = 48 V

GND

٦W

D_H 5 V/div

LOGIC REPRESENTATIVE APPLICATION SCHEMATIC

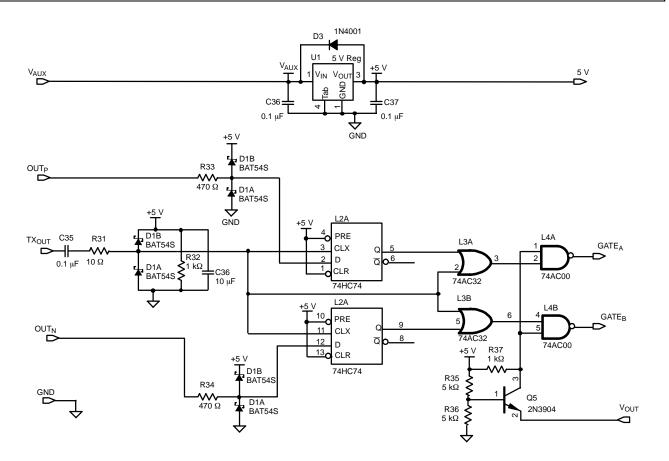
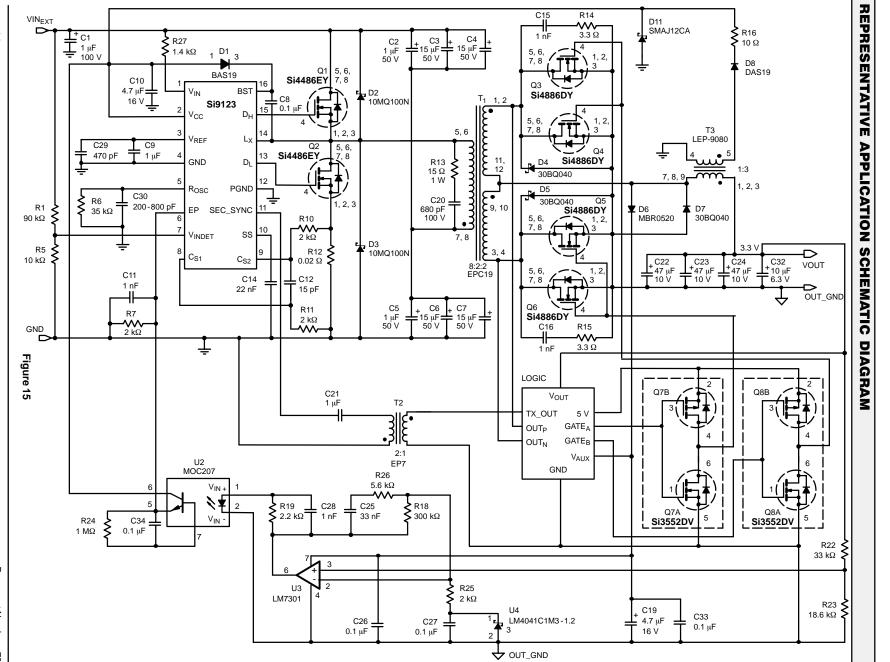



Figure 14.

www.vishay.com **16**

Document Number: 72098 S-03639—Rev. B, 20-Mar-03 Si9123

Vishay Siliconix

New Product

<u>AHS</u>